Category Archives: Weapons of Tomorrow

Do We Need A Bigger Bullet?

Jim Schatz, former HK USA manager (during the period of peak Because-You-Suck-And-We-Hate-You customer service, actually) always has one of the most interesting presentations when he’s up at an NDIA1 conference. The slides from this years’ NDIA are up (here), and Jim’s presentation, interesting as ever, is up here (.pdf). Jim wants us launching bigger bullets, to longer ranges.

Jim’s basic beef is probably best encapsulated in this quote from an SF team sergeant:

Few enemies would even consider taking America on in a naval, air or tank battle but every bad actor with an AK will engage with U.S. forces without even a second thought.

To boil down his argument to a single-sentence thesis: The US lacks small-arms overmatch, and only changing cartridges can get it for us. He defines overmatch by effective range. As he sees it, this is what the world looks like today:

schatz_slide_overmatch_now

As a former infantryman, Jim knows that weapons don’t square off one-against-one. On the battlefield, units from corps to squad size all maneuver to bring their organic, attached and support firepower to bear on the enemy (who is doing the same, inversely). It’s a common fallacy that (for example) because every squad in the Ruritanian army has a designated marksman, our squads should have one too. (Maybe they should, but not directly because of what the Ruritanians are doing). As you can see, Jim’s focus on range leads him to pair off sniper rifles with light machine guns, weapons which have similar effective ranges for completely different reasons, even when they fire dimensionally identical ammo.

As far as his 1000m effective range of the SVD is concerned… he must have shot one?

Here is one of his proposals for overmatch. There’s a few things screwy here (the SVD has grown  an even-more-ludicrous 500m of range, to 1500m), but that’s not important. What is important is the argument that going to an Intermediate Caliber Cartridge (something like the 6.5 or 6.8 or something all new in the 6-7mm neighborhood) for rifles and to .338 for support weapons will provide significant range overmatch.

schatz_slide_overmatch_future

The increased ammo weight can be made up in part by polymer or semi-polymer (i.e. with a metallic base) cases.

Jim at least partially neutralizes the cost-in-times-of-drawdown argument by suggesting that the new weapons go only to the tip of the spear, the guys whose mission it is to produce casualties, and take and hold ground, with these weapons. That’s only about 140k actual shooters out of the much larger service. A finance clerk needs a rifle, sure, but he or she can live with the latest-but-one.

Bear in mind that the target set is also not static, while we’re developing all these new weapons the Russians, the Chinese, and even the ragtag insurgents of the world (who have definitely, like Russia, pushed more 7.62mm weapons down to squad-equivalent level than heretofore) are acting, adapting, and changing, too. We don’t need to overmatch the enemy today with the weapons we’ll have in ten years. We need to overmatch the set of weapons the enemy will have ten years from now, in ten years.

Men can disagree about how best to get there. Assuming we stick with the M16/M4 platform, Our Traveling Reporter would have us go to the 6.8 x 43. (It was news to him that the Saudi Royal Guard has adopted this platform, in LWRC carbines, or that military 6.8 is in production for export now by Federal — formerly ATK). We would probably go with the 6.5 (x38, although the length designator is seldom spoken aloud) Grendel for its lower BC and higher sectional density (=longer effective range, flatter trajectory, more energy on target). The 90 grain Federal load in the 6.8 is very effective closer in (the 6.8 was developed with SF input as a CQB cartridge).

Some current contenders --  M855A1 5.56; 6.5 Grendel; 6.8 SPC; 7.62 NATO. From an excellent article by Anthony Williams setting out the historical context.

Some current contenders — M855A1 5.56; 6.5 Grendel; 6.8 SPC; 7.62 NATO. From an excellent article by Anthony Williams setting out assault rifle ammo in historical context, including many old, obscure, and outright forgotten attempts. Shape of the 6.5 suggests a superior BC. The 6.8 is compromised by its 5.56 ancestry and packaging (bolt head size/overall length).

This is not an entirely new or novel idea. As mentioned in the caption to the photo above, British researcher Anthony Williams has a very fine article on Assault Rifle History with lots and lots of ammunition comparison photos. Back in the 1970s, a guy whose business was called Old Sarge, based in the highway intersection of Lytle, Texas, made a quantity of 6 x 45 guns and uppers. Based closely on the 5.56, these guns (most of them were built as what we’d now call carbines) were completely conventional, but like today’s 6.8 SPC the intent was to create superior terminal ballistics. We don’t know what happened to him or what seemed to be, when we stopped in, his one-man business (he talked us out of a mod he’d done for others, an M60 bipod on an XM177).

If we have a serious criticism of Schatz’s work here, it’s that its focus solely on range as an indicator of overmatch understates the problem. Hadji with his AK and mandress has a lack of fear of our troops that stems only partly from his belief that range makes him safe (and only partly from his paradise-bound indifference to being safe). His feeling of impunity stems from a belief he won’t be engaged at all, won’t be hit if engaged, and won’t be killed or suffer significantly if hit. We need to increase the certainty that our guys will fire back, not just increase our pH, and we need to increase our pK as well. The first of these is far outside the scope of weapons and ammunition design, but it is, in our view, the most serious shortfall of US and Allied forces.

We have another beef that’s not specific to this, but that arise with any attempt to pursue range or other small-arms overmatch: it never works. There are only two ways pursuit of overmatch can finish. Either your new weapon does not constitute an overwhelming advantage, or it does — in which case everybody copies it most ricky-tick. Mikhail Kalashnikov died bothered by the fact that he never got royalties on any of the millions and millions of AKs made outside of his homeland, but the guys who really got copied were the engineers who built the StG.44. (True, the AK was better adapted to Soviet expectations, traditions, manufacturing capabilities, and training modes, but it was certainly inspired, conceptually, by the first assault rifle). It was a good idea. It was exclusive to Germany for mere months (of course, that they were losing the war may be a factor, but that the war ended was certainly a factor in slowing the adoption of assault rifles in Russia (a little) and the West (a lot).

In all seriousness, if you look at the history of firearms, you see a punctuated equilibrium. For centuries the flintlock is the infantry weapon, then the percussion lock sweeps the flints away in a period of 30 years or so (faster for major powers, or anybody actively at war). Then the breechloader dethrones the percussion rifle-musket in a couple of decades… to itself be overthrown by repeaters in 10 to 20 years. Calibers go from 11-13 mm to 7-8 mm to 5-6 mm at the same time all over the world. We’ve had a very long period now of equilibrium around the SCHV (Small Caliber, High Velocity) concept. Is it time for that equilibrium to be punctuated? Schatz says yes.

Notes

  1. NDIA: National Defense Industrial Association, a trade and lobbying group for defense contractors. Formerly the American Defense Preparedness Association (when Your Humble Blogger was a member, and they were fighting a rear-guard action to preserve a defense industrial base during the Clinton disarmament/drawdown cycle), and before that the Ordnance Association.

Sources:

Daniau, Emeric. Toward a 600 M Lightweight General Purpose Cartridge. September 2014. Retrieved from: http://www.quarryhs.co.uk/Toward%20a%20600%20m%20GP%20round.pdf ; this is a uniquely French view of this same challenge, hosted online by Anthony Williams.

Schatz, Jim. Where to Now? 3 June 2015. Retrieved from: http://www.dtic.mil/ndia/2015smallarms/17354_Schatz.pdf

Williams, Anthony. Assault Rifles and Ammunition: History and Prospects. Nov 2014. Retrieved from: http://www.quarryhs.co.uk/Assault.htm

Williams, Anthony. The Case for a General-Purpose Rifle and Machine Gun Cartridge (GPC). Nov 2014. Retrieved from: http://www.quarryhs.co.uk/The%20Next%20Generation.htm ; an earlier version was presented at NDIA in 2010: http://www.dtic.mil/ndia/2010armament/WednesdayLandmarkBAnthonyWilliams.pdf

(Note that Williams’s work on this matter was sponsored by H&K, a fact that is not invariably disclosed in all documents but that Williams publicly discloses on his website).

 

It’s About Time: Army Looking at JHP Ammo

9mm_124grain_jhpThis week industry contenders met with Army evaluators in the final Industry Day for the XM17 Modular Handgun Program, and the most interesting news is that the JAGs are finally on board with using jacketed hollow point ammunition in the new pistol.

This has several consequences, assuming that these lawyers are overruled by other lawyers somewhere down the line:

  1. It increases the defensive utility of the firearm against unarmored enemies, although not nearly to the level of a rifle or rifle-caliber carbine.
  2. It just about guarantees that, modular or not, our next service pistol will be firing the 9mm. The 9mm is as effective — with modern JHPs — and much easier to shoot than .40 S&W or .45 ACP, and it offers greater magazine capacity. (See Loose Rounds’ repop of the FBI report that justified the Bureau’s return to 9mm from .40).
  3. It means that most of the “modular” advantages the XM17 proposal wants are kind of pointless. The Army wants a service pistol and a max-commonality concealment/compact pistol. Since users seldom go from requiring one to requiring the other and back — the set of concealment/compact pistol users is small, as M11 procurement numbers show — the whole “modular” theme of the procurement is a bagatelle.

Bob says these are the criteria, apart from improved ergonomics relative to current service pistols.

  • non-caliber specific
  • modular grips
  • grip that accepts a wide-range of hand-sizes (5th to 95th percentile)
  • ability to accept different fire-control devices/action types
  • ability to accept various magazine sizes
  • suppressor compatible
  • ability to mount “target enablers” (lights, lasers, etc) on a picatinny rail
  • match-grade accuracy (90% or better chance 4″ circle at 50 meters)
  • low felt recoil impulse

Not all of these are widely useful (explain to us why a military unit will need their pistols “to accept different fire-control devices/action types”?) but some clearly are. The ones that are most clearly useful, of course, are widespread in modern handguns.

As far as the pistols go, according to Owens, the interesting contenders are the STI/Detonics, the SIG P320, and the Beretta APX. We find it hard to believe that the 1911-based STI/D is seriously in the game, or that the brand-new APX is sufficiently developed. The 320 (with a safety) does seem to meet all the requirements. Unlike Owens, we’re not ready to write Glock and S&W off, and would be very surprised if both of them didn’t  make serious and credible proposals.

Here’s Bob’s story on the JHP reveal at the briefing, and here’s his story on what he considers the leaders of the modular handgun competition. Note that there is one small error or oversight in his JHP story, and that’s his statement that US SOF have used 9mm and .45 JHPs. To that, we’d add .40s. (Certain specific units use this caliber). The Gun Zone’s Dean Speir wrote a post years ago on the legalities as observed by SOF since 1985.

Don’t Get Too Excited

Given the marginal role handguns play in combat, the adequate supply of current M9 and M11 service pistols (as well as non-standard pistols in some units), and given the rampant downsizing of the Army (it has less than half the combat power it did in Cold War days, and is scheduled to lose another 40,000 men, mostly “tooth” not “tail”), this entire program is a waste of time and money. If the contract goes forward, the Army will buy about a half-million service pistols plus some tens of thousands of compact variants for all services. The Air Force and Navy are accustomed to having the Army do their small-arms purchasing. The Army plans to force-feed the new modular pistol to the Marines, who are explicit about their lack of interest in it.

We’d be very surprised if this proposed procurement came to pass. If the Army doesn’t kill it, Congress will.

But the final approval of JHP ammunition for non-SOF pistol users is long overdue. In fact, it’s the single biggest thing they can do to improve the utility of current service pistols, and it can be done without out tests and contract disputes (hollow-points are already in the supply system for DOD police).

Update

Soldier Systems Daily has the PEO Soldier press release with direct quotes from Richard Jackson, Special Assistant to the U.S. Army Judge Advocate General for Law of War.

Debi Dawson, PEO Soldier spokeswoman, also noted that by “modular” the Army means “allows adjustments to fit all hand sizes.”

What’s After Tracking Point?

We’ve been pretty high on precision guided weapons technology since the first time we saw a TOW do its thing. (And Javelin and other current weapons have answered most of the complaints about TOW since then). But in recent years, the promise of PGWs has migrated down into the small arms world, thanks to the same combination of Moore’s Law, free-flying science and nitty-gritty engineering that gives us everything from rapid genome sequencing to haptics and 3D printing.

We’ve been pretty impressed with the precision-guided rifles and Tag / Track / XACT technology of Tracking Point. So what comes after that? DARPA says: precision-guided, steerable bullets. They call the program, in a felicitous acronym, EXACTO, Extreme Accuracy Tasked Ordnance. Like the Javelin and the Tracking Point PGW, it seems to tag a target and then pursue it relentlessly.

DARPA recently released the above video, along with this blurb:

DARPA’s Extreme Accuracy Tasked Ordnance (EXACTO) program, which developed a self-steering bullet to increase hit rates for difficult, long-distance shots, completed in February its most successful round of live-fire tests to date. An experienced shooter using the technology demonstration system repeatedly hit moving and evading targets. Additionally, a novice shooter using the system for the first time hit a moving target.

This is not too different from what TrackingPoint does now, in terms of results. What is different is how the EXACTO round functions.

This video shows EXACTO rounds maneuvering in flight to hit targets that are moving and accelerating. EXACTO’s specially designed ammunition and real-time optical guidance system help track and direct projectiles to their targets by compensating for weather, wind, target movement and other factors that can impede successful hits.

You can see from the video that they’re getting hits on their e-type silhouette, but they don’t appear to be getting center of mass hits. Still, it’s an admirable case of the dog walking on his hind legs, and this suggests that the science is licked, and what remains from here on out is simply engineering. (Not trivial, engineering, but once the science has shown that something is possible, it’s up to the engineers to find elegant and practical ways of doing it).

One significant difference between this and Tracking Point’s technology (so far) is that TP uses a bespoke or customized weapon; according to DARPA, EXACTO works with an ordinary rifle, only the optoelectronics and ammunition are changed.

It’s not rifle-caliber, as usually designated, yet; this demo is with a .50 caliber smart projectile.

“True to DARPA’s mission, EXACTO has demonstrated what was once thought impossible: the continuous guidance of a small-caliber bullet to target,” said Jerome Dunn, DARPA program manager. “This live-fire demonstration from a standard rifle showed that EXACTO is able to hit moving and evading targets with extreme accuracy at sniper ranges unachievable with traditional rounds. Fitting EXACTO’s guidance capabilities into a small .50-caliber size is a major breakthrough and opens the door to what could be possible in future guided projectiles across all calibers.”

The EXACTO program developed new approaches and advanced capabilities to improve the range and accuracy of sniper systems beyond the current state of the art. The program sought to improve sniper effectiveness and enhance troop safety by allowing greater shooter standoff range and reduction in target engagement timelines. For more information, please visit the program page.

via 2015/04/27 EXACTO Guided Bullet Demonstrates Repeatable Performance against Moving Targets.

OK, so let’s visit the program page, shall we?

Turns out, there’s not all that much there. We do get an uninformative 3D rendering of an EXACTO projectile, but that’s about it. There is a suggestion that the steering of the bullet is aerodynamic in principle.

exacto projectile_fullThere is this brief update on where the project stands:

The EXACTO 50- caliber round and optical sighting technology was developed to greatly extend the day and nighttime range over current state-of-the-art sniper systems. The system combined a maneuverable bullet and a real-time guidance system to track and deliver the projectile to the target, allowing the bullet to change path during flight to compensate for any unexpected factors that may drive it off course.

Technology development in Phase II included the design, integration and demonstration of aero-actuation controls, power sources, optical guidance systems, and sensors. The program concluded with a system-level live-fire test.

In 2009, the project was described as follows [.pdf]:

Extreme Accuracy Tasked Ordnance (EXACTO)* *Formerly Laser Guided Bullet.

(U) The Extreme Accuracy Tasked Ordnance (EXACTO) program is developing a system that provides sniper teams with the ability to identify and engage targets with heretofore unobtainable range and accuracy against stationary and moving targets under difficult environmental conditions, either day or night. The system uses a combination of a maneuverable bullet and a real-time guidance system to track the target and deliver the projectile to target. Technology development includes the design and integration of aero-actuation controls, power sources, and sensors. The components must fit into the limited volume (2cm to the third power) of a 50-caliber projectile and be designed to withstand a high acceleration environment. When integrated and tested, this system will greatly increase the effectiveness of two-man sniper teams, regardless of the environmental conditions and the time of day. The EXACTO technology is planned for transition to the Army by FY 2012.

FY 2009 Plans:

– Design guidance system.
– Design maneuverable projectile.
– Construct all novel 1x scale components.
– Measure component and subsystem performance in appropriate environments.

An Air University paper said this of EXACTO, comparing it to aviation precision guided munitions programs:

Foot soldiers are often left out of consideration when money is spent on precision weapons. The DARPA Extreme Accuracy Tasked Ordnance (EXACTO) is a command-guided .50 Cal sniper round designed to put long range, pinpoint precision in the hands of a common soldier. The system works by tracking a target with an infrared spotter’s scope that doubles as a command- guidance tracker. The .50 Cal bullet is fired and responds to trajectory commands sent by the scope (which tracks the target and bullet). The system accounts for wind, moving targets, and provides accuracy at range that normally requires years of sniper training to achieve. The EXACTO program not only gives sniper capabilities to common foot soldiers, it ensures a kill on the first shot, and enables moving target capabilities that have until now only been available to tactical aircraft and UAVs. In this case, the range is far shorter than HTV-21 or T32, but the strategic implications of super-sniper-battalions may prove even more deterring to an enemy force. For years, the real practical advantage US soldiers held over adversary soldiers came in the form of the air power watching over. EXACTO aims to enable America’s soldiers to enjoy technological advantages its airmen have enjoyed for decades.3

Although EXACTO was indeed scheduled to conclude in 2012 [.pdf], and some DARPA pages refer to it in the past tense, but the live fire test video shown here was shot in 2015 and only released in April (in-house, 10 Apr 15, to the public, 27 Apr 15).

Notes

  1. HTV-2: Hypersonic Test Vehicle-2.
  2. T3: Triple Target Terminator-3, an experimental missile that combined a ramjet sustainer with a rocket booster in the form factor of a pre-existing missile.
  3. Nielsen, Michael B. (Maj., USAF). Addressing Future Technology Challenges through Innovation and Investment . March, 2012: Air University, Maxwell AFB, Alabama.

Jets (and Vehicles) with Frickin’ Lasers on They Heads

Doctor Evil’s technological dreams, not to mention Auric Goldfinger’s and Ernst Stavro Blofeld’s, are inching closer to reality. That’s the only possible conclusion an avid movie-goer will draw from a fascinating Bill Sweetman article in Aviation Week. 

Today, on an armored vehicle as an air defense weapon that doesn't need to "lead" a target; tomorrow, an aerial precision-strike capability? (Bill Sweetman AWST photo).

Today, on an armored vehicle as an air defense weapon with a functional MV of infinity, so it doesn’t need to “lead” a target; tomorrow, an aerial precision-strike capability? (Bill Sweetman AWST photo).

In fact, Sweetman deploys a bunch of pungent prose that sounds like something out of The Strategy Page, but with the essential difference that Sweetman knows what he’s talking about and has been wired into defense RDT&E since the second coming of laser weaponry (and the first serious, non-Bond-villain one) in the 1980s. Sweetman starts with a dismissive swipe at US and USSR laser weapons programs of the 1980s (“The only thing of consequence that any of them destroyed was confidence in laser weapons”), and then leaps into “that was then, this is now”-ville.

New HEL [High-Energy Laser] weapons are smaller than the 1980s monsters, with a goal of 100-150 kw, and powered by electricity rather than rocket-like chemical systems. Modest power permits more precise optics and—in some cases—the use of commercial off-the-shelf fiber-laser sources, improving beam quality (that is, focus) and reducing cost.

Star Wars lasers were intended to hit things that missiles could not touch. The new generation exploits different characteristics: a magazine as deep and easily replenished as the fuel tank, and a low cost per shot (about $1, says Rheinmetall). The idea is to deal with targets that missiles cannot engage affordably.

A mini-UAV is a threat because it can target ground forces for artillery. It is cheaper than any surface-to-air missile, but a laser can blind it, destroy its payload or shoot it down. Rocket and mortar defense is another application. Rafael’s Iron Beam laser is a logical follow-on to Iron Dome, which is practical and affordable only because it ignores rockets that will fall on open ground; that will no longer work when weapons are guided.

Hmmm. Thinking about the implications of what Sweetman is saying here, there are several paths around Iron Dome which the Palestinian terrorists may choose to adopt: they could try overwhelming it with quality, overwhelming it with accuracy (by guidance, as he suggests, or simply by increased ballistic accuracy and precision of aim), or overwhelming it with speed by using gun artillery instead of relatively-slow rockets.

Wile-E-Coyote-Genius-Business-CardNo doubt the cagey Israelis (has any nation’s paranoia ever been more justified?) have already thought this through and have counter-countermeasures in development (one of which certainly is a laser system). The Palestinians, in their ongoing attempts to outsmart the smarter Israelis, are the Wile E. Coyote of weapons development.

Anyway, let’s return to Sweetman’s rundown of current and very-near-future directed energy weaponry.

Close behind the systems already shown by Rheinmetall, Rafael and MBDA—certainly not a technological leap away—is the new Gen 3 HEL being developed by General Atomics Aeronautical Systems to fit on an Avenger unmanned air vehicle (AW&ST Feb. 16-March 1, p. 30). If what we hear is correct, it combines an output as high as 300 kw with high beam quality; it can fire 10 times between 3-min. recharges; and a version might fit in the 3,400-lb. pod that Boeing designed for the Advanced Super Hornet (see photo). A bomber or a special-operations C-130 could carry it easily.

This is a tipping point, because what you can do with 300 kw also depends on what you are trying to protect. If the goal is to knock down a supersonic antiship cruise missile (ASCM), there are two problems: water in the atmosphere (which attenuates laser energy) and the fact that a damaged ASCM can still hit the target. But if the target is an evasively maneuvering aircraft, it will often be in clear, dry air; and it is enough to destroy the missile’s seeker, put a hole in the radome, even at well-sub-kilometer range or weaken the motor tube to cause a miss, even at well-sub-kilometer range.

This is one where you’ll find it rewarding, we think, to open the mind and  Read The Whole Thing™. Sweetman is no more infallible than any of us, but he is a more informed aerospace analyst than almost any of us, and bears close watching.

What’s Up in the 3D Printed Gun World?

Time for an update, eh?

WarFairy Lower Banner

We’ve been seeing really creative AR lowers for a while now. A lot of the greatest ingenuity, like the FN-inspired creations above, come from the innovator who calls himself Shanrilivan and his creative entity WarFairy Arms. Watching his Twitter feed, or @FOSSCAD’s, is a good way to keep up with what’s coming from the community. (Coming soon: AR and AK fire control groups, for example):

AR fire control group

If you think there’s no innovation happening in firearms, you’re not tapped into the maker community inside the gun community — or is it, the gun community inside the maker community?

Some Words about Development

These lowers are not being “engineered” in any real sense of the word. Instead they’re being designed, and are then being tested, in a very tight closed-loop development cycle. From lowers that busted in a couple of shots, we’ve got lowers that have endured thousands of rounds. And that look stylish. This pastel AR has a printed lower and printed magazine.

printed lower and mag

It’s ready for its close-up, Mr De Mille:

printed lower and mag closeup

To see about 15 more pictures of printed-gun developments, including magazines, a 7.62mm lower, a revolver, and more, click the “More” button.

Continue reading

What’s the Opposite of “Advanced”?

We leave answering the question as an exercise for the reader after watching this video, about 15 minutes long. Here you see the 1989-90 contenders for the Advanced Combat Rifle, a program that would have replaced the issue M16A2 rifle which was still being fielded into some low-priority units, replacing 20-25 year old M16A1s, at the time.

The video begins with a rather sloppy three-minute history of American infantry weapons (you’ll cringe at the assertion that the first Army bolt-action was “made by Krag-Jorgensen,” or that the 1903 Springfield “wasn’t much better than the Krag.”  The video also makes a curious claim — one not seen in the doctrinal literature — that the M16A2 had an effective range of 550 meters.

The reason for the program is explained: the actual combat accuracy of the rifle in soldiers’ hands degrades far below its mechanical potential. So the ACR program was hoping to double the real-world effectiveness of the individual weapon.

The four vendors trying to grab the contractual brass ring were:

  • AAI, with a flechette-firing M16 cousin, complete with early ACOG;
  • Colt, with a product-improved M16, including an adjustable carbine-like stock, four-position selector, duplex (two-bullet) ammunition, and an available Elcan scope (similar to the model later adopted as the M145 machine-gun optic);
  • H&K, with an Americanized version of their ill-fated caseless G11; and,
  • Steyr-Mannlicher, with an oddball AUG derivative firing polymer-cased rounds with flechette projectiles.

At about 10 minutes in, the video presents the modifications made to Buckner Range on Fort Benning to evaluate the novel weapons.

In the end, none of them was sufficiently superior to the issue M16A2, or sufficiently well-developed already, to justify further development.

We thought for sure we’d put this video up before, but while we’ve talked about some other boneheaded procurement events — like in this post on the Objective Family of Weapons two years ago — we don’t appear to have actually done it.

What TrackingPoint Must Do to Sell to SOF

Tracking Point ProductsWe think the guys running TrackingPoint know what they have to do. In fact, we think they’re already doing these things. But here’s what, from our point of view, is missing from the current iteration of TrackingPoint hardware and software for real penetration into the upper tier SOF market.

So, Who Do You Hit First?

SF Recruiting Poster pick it upIf we were their marketing consultants (we use our MBA, but not like that), we’d also press them to focus on sell-in to certain SOF elements that are image leaders in the international SOF community. Sell, for example, to SAS, and you will have Peru, the UAE, the Netherlands, and many other nations very interested in your product line (Indeed, sell to SAS or to their US counterparts, and you’ll get sale after sale, worldwide). It’s important, also, not to over-discount the stuff to your lead customers: confidentiality agreements are fine and good, but they probably can’t keep, say, American shooters from telling the foreign shooters they’re training with or competing against, what a good deal you gave ’em.

Another possible launch customer is FBI HRT. As their history of reckless shots and whacked non-targets shows, they could use the marksmanship boost. Meanwhile, despite their record, they’re very influential on local police procurement. Tag/track/release technology is just the ticket for police marksmen who never get enough time for training, and yet have to make more consequential and more constrained shots than a lot of military snipers. (A military sniper, outside of some rarefied CT or HR gigs, almost always has the option to no-shoot. FBI or police sniper, scope-on a crim threatening a hostage, might lack that luxury).

Who Don’t You Hit?

While the Marine Scout Snipers could use the hell out of this thing, it’s too foreign to Marine marksmanship culture, which is a master-and-apprentice culture that demands effort, even hardship, and eschews automation or corner-cutting of any kind. So we’d put these excellent Marine precision marksmen way down the list, right now. We’ve worked with enough 8541s to know that they like to do things the hard way, and they take particular joy in doing it the hard way faster than an Army guy can do it the easy way, and take a positively indecent glee in breaking the dogface’s easy-way technology. Bringing this to the Marines first means that they will use their considerable intellect and energy to break your machine and send you away with a duffel bag of expensive pieces (so they’re great for finding unimagined points of failure — there is that). Bringing it to them after selling it to the Army is not a panacea. It might be even harder, because they will be energized to demonstrate that the Army did Something Stupid, because if Marines believe three things about the Army it’s that: we have too much money, too little guts, and way too little brains.

You’ll probably need a Marine sniper on board to sell to Marine snipers. Once you do, you won’t get quite the global reach that you do by selling to SAS or its American counterparts. But you get in with the world’s greatest military image machine, and there is that. 

You have to be very careful about selling in to Hollywood. (One TrackingPoint precision guided rifle is already in the hands of the most successful firm that supplies movie and TV weapons and armorers). The reason is that an inept display of your product can hurt sales. (It would be very Hollywood to put the TrackingPoint system in the hands of a villain, to be overcome by someone like a Marine sniper or James Bond willing to use superior skill and old school firearms).

What’s Missing From 1st-Gen Tracking Point

While the extant system has undeniable SOF applications, it also has limits, and some technical improvements — none of which are impossible or require TrackingPoint engineers to schedule an invention — would increase its marketability in military precision riflery circles.

Emission Control / Encryption / ECCM

It’s great that you have a computer in a scope, and it’s the wave of the future. But the computer can be located by enemy SIGINT. The video and wifi links need strong encryption, and in addition they need to be controllable so that emissions can be closed down. Even third world enemies often use electronic support measures these days, and so you need some RF low-observability measures, and you also need to have electronic counter countermeasures to ensure usability of the system in an electronic environment.

Two-way communications

This one engenders some risk, but there should be a capability for the opetator to hand off control of the PGM’s optoelectronic systems to someone’s telepresence from a support station. Or even from another field station.

Intelligence gathering MASINT capability

There is everything in this weapons system that’s needed, for instance, to remotely measure a prison camp or a suspected SS-20 missile TEL. This capability would also tie in beautifully with the improved communications and encryption capabilities mentioned above.

A Ballistic Development Interface, SDK or App

Now that we have that in-scope computer, fully integrated with the hardware of the firearm, we need to have a way to make it more adaptable to different ammunition loadings, including one-time, single-mission loads. And that has to be done at the unit level; otherwise you’ve got a potential breach of compartmentation.

tracking_point_trad_mode

This is a sales stopper with top tier units. They develop their own long range capabilities, including, at times, loads, and they do it because they think they, like benchrest shooters, can handload a more consistent, higher-precision round than even premium ammo suppliers can do.

Demonstrated, Documented Durability

The running joke is that a soldier or marine can break a ball from a ball-bearing — just leave him alone in a room with it, and you’re a half hour from looking at a broken ball, and hearing, “Uh, I dunno, sarge. It just broke!” (Bearing-ball, hell, these guys could do that with a wrecking ball). You want your machine to be wrecking-ball strong.

Demonstrated “Fail Safe” mode.

The capability of the system has to degrade gracefully. If you’re sneakin and peekin’ on Day 38 of a “14-day mission,” dead batteries can’t leave you in shoot-randomly mode (let alone, can’t-shoot mode). Even an ACOG, which is probably harder to break than the gun it’s atop, has cast-in backup sights. But with a TrackingPoint gun’s scope being dependent on a CCD display at the shooter end, you can’t afford to have dead batteries.

Full Auto Stabilization Mode

We can’t be the only ones who looked at this and thought, “tag, track & x-act really could up the game of a door gunner and/or Boat Guy.” Hell, those Chenoweth sandrails might come back from the dead, if the gunners in them could actually hit things instead of just contribute morale-raising decibels to a fight. Imagine this Hollywood concoction, except real, and with the boost in hit probability than TrackingPoint promises.

You know you want one (more on the movie gun soon).

Note that these are just for the military employment of tracking point, as combat weapons technology. We haven’t even addressed the utility of tracking point for big game hunting, which is what the thing was developed for in the first place. Its applications for everything from African plains game to heliborne predator control seem self-evident. We haven’t even hinted at the potential for a rimfire TrackingPoint squirrel slaughter system, something that would sell itself once the price comes down.

As we all know, the guys running TrackingPoint are not stupid. They are probably thinking of most if not all of these things already. If not, hey, our rates are reasonable; drop us a line.

The Latest in 3D Printed Gun Developments

As we predicted, last time we looked at this, 3D printing is evolving to better adapt the available materials in consumer printers to the requirements of firearms applications. No more is it true that a printed receiver, even printed of low-end materials like PLA on a low-end consumer printer, is destined for a short and unreliable life. And people are taking printing in new directions.

The Continued Evolution of the Printed AR Receiver

The first printed AR receivers were clones of their aluminum forebears. And they broke. Boy howdy, they broke. You may recall that between the M16A1 and M16A2, even the forged 7075-T6 aluminum receiver was redesigned for greater strength. Material, and strength, was added to the pivot pin supports into the buffer tower area, which are the most vulnerable areas of any A. receiver

Let’s start here:

3d printed disaster-no

That looks like what 3-D printer enthusiasts call a “rage print.” Printer rage occurs when something goes wrong in the 3D programming, and instead of making a nice, neat, three-dimensional part, your printer prints a bunch of gooey plastic strings going in random directions. That’s exactly what this looks like. But that’s not what this is. It’s actually a new support-layout software that allows saving filament (even though the most common filament, PLA, is a 100% recyclable thermoplastic). We think it’s Autodesk MeshMixer. The supports look like a thready mesh, but there’s an AR lower under there.

If you look at the lower closely, you’ll see that it differs in detail from a metallic lower, whether it’s the stock 7075 forging or the too-cool case-hardened billet that Trumbull uses for its work-of-art ARs. It’s much thicker in places, which helps to make up for the lower strength of the soft plastic. We mentioned earlier that this was inevitable; just as designs and evolved to take advantage of new materials before, we have to expect designs to evolve to take advantage of these new materials, and new ways of manufacturing parts with them. This model, the Hermes, includes an integral buffer tube and stock, making the weakest part of the AR lower (the buffer tower-buffer tube interface) a single part:

hermes1-8

Here’s a couple more-evolved minimalist AR lowers, the Phobos (yellow) and Vanguard (red):

 

 

Vanguard and Phobos lowers

Simplifying the lower reduces its print time and its likelihood of print errors. Thickening its parts reinforces weak areas and eliminates stress risers. Note that these are “as printed” without extensive acetone smoothing.

Here’s the Phobos, with its minimal magazine tower, built into a firearm.

Phobos printed on DaVinci01

 

It is optimized for the C-Products Beta magazine.

Phobos works with c-products betamag

 

Here is a close-up. The increased thickness, for strength and durability, is clear. So is the rough surface finish. This example was printed on a DaVinci printer, an inexpensive printer ($500) from XYZPrinting.com.

Phobos note thickness and finish

Here is the Phobos on range test. 100 rounds so far, successfully, as of 10 October 14.

Phobos in action

Are they militarily useful yet? Not really. Only as a prototyping technology, but it’s already been used that way. For instance, when Taiwan developed a new buttstock for its service rifle, they used 3D printing to produce ergonomic test samples.

But one can’t help but be reminded of Franklin’s retort to a woman who questioned his interest in the Montgolfiers’ pioneering balloon ascents: “What use is it? Madam, what use is a newborn baby?”

Revolver Developments

It’s not our cup of tea, really, but there’s quite a few people working on mechanically operated revolvers. Some of these look like the ancient Mauser zigzag revolver; others look more like something that would come with a Nerf trademark on it. Some seem to resemble both:

Imura revolver rendering

That’s the Imura revolver, named for Japanese 3D firearm experimenter (and criminal suspect, thanks to that) Yoshitomo Imura.

The Regulatory Angle

Of course not everybody thinks additive Manufacturing applied to firearms is a good idea. Indeed number everyone thinks that manufacturing firearms is a good idea most of your familiar with California Democrat Mike Honda’s bill to criminalize all home gunsmithing. The bill is certainly DOA in Congress in an Election Year, when even liberal pols are willing to denying Mike Bloomberg three times, like Peter.

Meanwhile, police and regulatory agencies in the US, Britain and Australia have been willing to lie about the technology to spread FUD. Here’s a line from an article at 3Ders.org:

Although police forces from around the world are warning technology enthusiasts not to attempt to use 3D printers to make plastic guns, because each time they have been tested the weapons have exploded.

Of course they have, because the cops/authorities have lightened the infill to make grenades, not pistols. If you hollow out a 1911 barrel, it’ll blow up, too. That’s far from the only mistake in the article, which claims to be an overview and timeline of 3DP weapons. For example, there’s this pseudo-engineering mumbo-jumbo:

 Two factors in engineering still need to be overcome, these are; high stress resistance materials that resist knife edge loads and high temperature flashes.

Huh? “Knife-edge loads?” Somebody’s having hot flashes, and it’s not the guns. If you look back up at the start of this post, you’ll see how the AR receiver has evolved to be something effective that can be made of low-tensile-strength polymers. And then there’s  this howler:

Solid Concepts… [used] a direct metal laser sintering printer to create a replica of a 1911 Browning .45 pistol. To date this weapon has fired over 600 shots successfully. … printing such a gun to resell is not currently economically feasible.

Except, of course, that Solid Concepts is already printing, and selling, them. Which they do sort-of note in the article, in the bit in the ellipses.

Not everything in the article appears to be nonsense, but in particular, the idea that printed guns are proven to explode needs to be stepped on. Hard. Sabotaged guns are proven to explode: not the same thing.

And to Make Regulators’ Heads Go High-Order Again…

It’s bad enough, from the standpoint of a domineering regulator, that people are using technology to make firearms without a “Mother, may I?” from On High. But it’s gone beyond that. Japanese technologist Yoshitomo Imura has taken the whole thing in a meta direction by designing printable technology for making guns. His current designs include a 3D printer (not that that’s anything new; many printers are capable of printing their own parts) and, more remarkably, a 3D printed micro milling machine.

imura_printed_micro_mill

Certainly there are valid objections: the technology is not there to print a sufficiently rigid mill, the unit can’t match the rigidity of even a low-budget Chinese unit, etc., etc.

To which we say, “What use is a newborn baby?”

In a world where the products, the tools, and even the tools that make the tools are all fundamentally digital, banning guns isn’t just difficult. It’s impossible. Any attempt at “control” will be reminiscent of the manner in which the USSR and its slave satellites struggled, never succeeding, in mighty efforts to ban information — until they ultimately collapsedWhen banning books didn’t work for them, they tried banning typewriters. Certainly the Mike Hondas of the world will go after the digital information needed to print gun parts, but information continues its trendline towards greater freedom and independence.

What’s After Black Hawk?

We still think of the Sikorsky Black Hawk as a modern helicopter, and the Bell Huey as an artifact of the 60s (it actually first flew in the 1950s as the YUH-40!). But the Marines continue to use Hueys, although theirs have been modified about as far as an aircraft can get. The Army, Navy, Air Force and Coast Guard have all the “new” Black Hawks. But the Black Hawk is itself an old bird: we first saw one at Mott Lake Compound in the winter of 1981 or 1982, about 32 years ago. Since then, we’ve seen what they could do, even in Afghan density models, going into the field in ancient A-models and riding an ultramodern Q-model medevac bird back to Bagram.

Sure, we were still jumping, rappelling and fast-roping from Hueys 10 years after our first Black Hawk sighting, but the UH-60 came in on the UTTAS program of the 1970s (the program that took it to the Navy was, we think, LAMPS). A Sikorsky proposal edged a Bell proposal. Well, now it’s time for a new competition to demonstrate technology, as the first step towards developing a replacement for the Black Hawk, a helicopter that came to be as loved and respected as its predecessor. And the same two firms are going head-to-head again. Here’s what one of the contenders, the Sikorsky SB-1 Defiant, looks like:

Future Helicopter JMR

The contenders are both more than just helicopters. The Sikorsky entry (above), for which the venerable chopper builder teams with Boeing, is a compound helicopter, with a thrust propeller in the back, and counterrotating rotors to handle both torque and the µ-1 problem at high speeds (when the forward speed of the aircraft in air is great enough to reverse airflow on the retreating blade). The first aircraft we know of to exceed µ-1 in level flight was the Carter Copter Technology Demonstrator, a hybrid gyroplane/airplane which used rigid rotors largely unloaded in flight, and small wings suitable for cruise only and stalled at lower speeds. The CCTD concept is unsuited for a military helicopter replacement because it cannot hover, although it can land and take off vertically; military requirements include the ability to conduct sling load and fast rope operations.

The Bell entry is a convertiplane of the tiltrotor type, the V-280 Valor.

Bell-V280

It looks like they have simplified the V-22 concept by having only the rotors, not the entire engine pods, tilt.

It’s a joint program, so maybe the Marines will get out of the 1950s and 1960s, finally.

Both aircraft show that the basic vision is something with a Black Hawk’s interior volume and carrying capability, but faster (and presumably, more-efficient thus longer-range) cruise. The Joint Military Rotorcraft program is primarily an Army one, although if the Army develops worthwhile new aircraft the Navy and Air Force will be right there to join in. The JMR is a technology program only, and the contracts that Sikorsky and Bell now have are for flying prototypes with no assurance of production. Army and Navy have long-term rotorcraft programs that are primarily technological and budgetary at this point.

The basic problem with conventional helicopters is cruise speed: the µ-1 limitation holds them to well under 200 knots. That’s the key problem JMR will try to address. For decades, a wild variety of VTOL aircraft configurations have attempted to address this, and both Bell and Sikorsky have been involved deeply in those experiments, as have a number of lesser-known firms such as Carter, Piasecki (which continued as an R&D shop after selling their tandem-rotor plant and designs to Boeing in the 1960s), Groen Brothers, and others.

Tracking Tease

Got a phone call yesterday from a friend at a range in West Virginia. Three guys including a former SF man, a former SEAL (range officer), and a dealer/gunsmith/armorer without military service cracked the box on a new TrackingPoint .300 WM rifle on a long range.

This is file photo a standard TP XS3 rifle. Don't know yet what exact model our guys had.

This is file photo a standard TP XS3 rifle. Don’t know yet what exact model our guys had.

Quick take-aways:

  • Best packaged gun any of them had ever seen. In the gunsmith’s experience, that’s out of thousands of new guns.
  • Favorably impressed with the quality of the gun and the optic. It “feels” robust.
  • It’s premium priced, but with premium quality. Rifle resembles a Surgeon rifle. “The whole thing is top quality all the way, no corners cut, no expense spared.” They throw in an iPad. The scope itself serves its images up as wifi.
  • First shot, cold bore, no attempt to zero, 350 meters, IPSC sized metal silhouette: “ding!” They all laughed like maniacs. It does what the ads say.
  • Here’s how the zero-zero capability works:  they zero at the factory, no $#!+, and use a laser barrel reference system to make automatic, no-man-in-the-loop, corrections. Slick.
  • The gun did a much better job of absorbing .300WM recoil than any 300WM any of them have shot. With painful memories of developmental .300WM M24 variants, that was interesting. “Seriously, it’s like shooting my .308.”
  • By the day’s end, the least experienced long-range shooter, who’d never fired a round at over 200 meters, was hitting moving silhouettes at 850 yards. In the world of fiction where all snipers take head shots at 2000m with a .308, that’s nothing, but in the world of real lead on target, it’s huge. 
  • It requires you to unlearn some processes and learn some new ones, particularly with respect to trigger control. But that’s not impossible, or even very hard.
  • They didn’t put wind speed into the system, and used Kentucky windage while placing the “tag.” This worked perfectly well.
  • An experienced sniper or long range match shooter, once he gets over the muscle memory differences, will get even more out of the TrackingPoint system than a novice, but
  • A novice can be made very effective, very fast, at ranges outside of the engagement norm, with this system.

As Porky Pig says, for now, “Ib-a-dee-ib-a-dee-ib-a-dee-That’s all, folks!” But we’re promised more, soon.

Everybody is really impressed with the Tracking Point system. No TP representative was there and as far as we know this is the first report on a customer gun in the field, not some massaged handpicked gunwriter version. And as far as we know this is the first report on a customer’s experience with both experienced school-trained snipers and an inexperienced long-range shooter. The key take-away is the novice’s ringing of the 850m bell on moving targets. That’s Hollywood results without the special effects budget, and with real lead on real target. No marketing, no bullshit, just hits.

We asked about robustness. This isn’t like the ACOG you can use as a toboggan on an Afghan stairway and hold zero (don’t ask us how we know that one). But it seemed robust to the pretty critical gang shooting it Friday.

We wish Chris Kyle were here to see this. Maybe he already has!

Stand by for more on TrackingPoint, and on more on this range complex when the principals are willing to have some publicity.