Category Archives: Weapons of Tomorrow

“The Soldier got a good cheek weld on the soft, warm fur of the stock.”


3d_printed_hairScience fiction? Right now it is, but it’s now science fact that it’s possible to add integral hair to 3D-printed items. Scientists at Carnegie Mellon University illustrated this using the most common form of plastic 3D printing, fused deposition modeling (also called Fused Filament Fabrication by some vendors).

They can make short, thick, rigid bristles, or soft, downy hair. The result makes hairs, fibers or bristles that taper naturally, almost organically, to a point. They write:

In this work, we introduce a technique for 3D printing soft strands, fibers, and bristles (Figure 1), using conventional fused deposition modeling (FDM). Our work was inspired by the peculiar phenomenon that occurs during the opera- tion of a handheld glue gun: when a person extrudes hot glue material and moves the gun away, a “string” of residue often forms unintentionally (Figure 2). The shape, length, and thickness of the resulting stringy material varies based on how much glue was extruded and how fast the user moves away from the extrusion point. This artifact often annoys users, but in this work, we exploit the phenomenon.

The scientists, Gierad Laput, Xiang ‘Anthony’ Chen, and Chris Harrison came at the problem from a human-computer interaction background and approach (they all work at CMU’s Human-Computer Interaction Institute).

The bristles are deposited integrally as the brush is produced.

The bristles are deposited integrally as the brush is produced.

They did not use a high-end printer, but achieved their results with a Printrbot Simple, a ~$350 kit printer. They found that one way or another they could control the density, length, thickness, color, and distribution of the hairs or fibers. The hairs are also amenable to many kinds of post-processing. For the best results, they extrude the hairs horizontally, in the X or Y axis.

You can easily imagine some potential future developments, like a bespoke “hair” extruder that would lay down an array of hairs at once. Laput, Chen and Harrison have demonstrated the concept; now it’s up to the rest of the world to reduce it to practical applications.

Like a fur-bearing rifle stock. That’s perfectly and individually sculpted to your cheek weld.

They have also named the process: furbrication. Perfect!

The pre-publication paper (it is to be presented at a conference this month) is here on Laput’s server.  Hat tip, Caleb Garling at MIT Technology Review.

There are people who are not in the gun culture that think we are too attached to our firearms now. What’s going to happen when our guns are as soft and warm as a cuddly bunny?

Cyber Gun Aimed at Low-Information Generals

This image comes to you from the US Cyber Command’s booth at the AUSA convention, basically like SHOT show for the Army, complete with a keyword where the Chief of Staff sets the tone and introduces the buzzwords for the next year.


Wuzzzat he’s holding? A phased pulse rifle in the 40-megawatt range? Not exactly. This year, the Chief’s thunder has been stolen by that futuristic gadget, the Cyber Rifle. It’s a promotional gimmick from — who else? — the Army Cyber Institute at West Point. Appropriately enough it has been promoted by tweet.

It can open doors!

And zap drones! (If the Army gig doesn’t work out, they could sell this thing to every celebrity wedding planner from Malibu to Montauk).

The Cyber Gun isn’t a real weapon, although as you can see from the close-up, it’s built on AR-15 receivers. It’s more of a technology demonstrator, but even more than that, it’s a capabilities briefing in memorable, physical form. Captain Brent Chapman (the grinning fellow wielding the “rifle” in the “bunker lights and door” video) built it from COTS components, including a Raspberry Pi1, Wi-Fi module2, Kali Linux3, and Yagi antenna4 (since those may be terra incognita to some of our more firearm-oriented readers, there are definitions in the notes). It cost $150 to buy the parts, and 10 hours to build and test the Cyber Rifle.

Captain Chapman wasn’t entirely breaking new ground here. A very similar rig, made for mobile penetration testing, is in this 2013 blog post. Of course, it doesn’t look like a rifle.

So why does the Cyber Rifle, which is really a simple computer running some hacking tools with an antenna, look like a rifle?

Well, we mentioned how the Chief of Staff uses his speech to give impetus to ethe Army’s newest, shiniest buzzwords. No buzzword is shinier, now, than cyber. The Army has created a Cyber Branch (it took 35 years for SF to get a branch, but we didn’t offer the possibility of non-fighting slots for Academy grads that incline that way), and has selected its initial cadre of officers and NCOs. And here’s how we know that cyber’s a big deal with this Chief of Staff:

COS Milley visits ARCYBER

That’s the new boss, Mark Milley, in the Army Blue uniform, an outfit that looks like it’s on loan from the guards at Lenin’s Tomb. (He’s got a lot of sparkly baubles. Which one is the Hero of Socialist Labor?). Gen. Milley looks a bit bemused by the whole thing, but cyber is big with Big Green (source).

One of the many stories written about the Cyber Rifle in the last few days hints at the reason:

All of the tech was placed onto the rifle frame, making it easier for senior military leaders to appreciate.

“Easier for senior leaders to appreciate…” gee, that sounds a lot like “Generals are thick, make it look like a rifle or they’ll never understand how a computer can be an offensive weapon.”

But they wouldn’t really say that, would they?

Well, here’s another story with a quote from Capt. Brent Chapman:

The rifle shape, meanwhile, is mostly for kicks. ” By putting all of this stuff on the rifle frame, it also makes it very easy for senior leaders to consume,” Chapman says. “Aim. Shoot. Crash. “

In a last-ditch defense of Capt. Chapman’s career, he said that before General Milley visited his display; the Chief of Staff didn’t inspire the statement.

As far as we know.


  1. A low-cost single-board computer made originally to promote programming education to kids. Same idea (single-board comp) as Arduino, but oriented to programming, not sensing and control of physical stuff.
  2. This is the same circuit that’s in your phone and computer for getting on your WiFi network. It’s available in various forms, a USB dongle is usually used with Raspberry Pi and other small circuit boards. To support the Yagi, you need a dongle that supports an external antenna.
  3. Probably best explained by Adafruit:

    Kali Linux is a distribution especially aimed at penetration testing and network security applications. (It’s a successor to Backtrack Linux.) Kali isn’t intended as a general-purpose desktop OS for end users. Instead, it’s a collection of useful tools for monitoring, exploring, and attacking networks. It comes out of the box with tools like Wiresharknmap, and Aircrack-ng, and is particularly useful in situations where you just want a disposable machine/installation with some network tools.
    This is the software that runs on the computer, it includes the operating system and integrated hacking tools.

  4. A Yagi is a highly directional antenna array that works best for a narrow frequency range (or a single frequency). In fact, if you’re of a certain age, you’ve seen or owned one: the traditional TV antenna. The Yagi has a long axis, which is structural, not electronic; it is crossed by orthogonal elements, one of which is the actual transmitting element (or driven element, a dipole), one of which (behind the dipole) is a reflector, the remainder of which are towards the direction of transmission (or direction of the transmitter, for a receiving antenna) and are called directors.
    The thing on the nose end of the Cyber Rifle that looks like the rostrum of a sawfish? That’s the yagi, and the black nubs are the elements — the rearmost one is the reflector, the one just before it is the driven element — the only one wired to the transmitter — and all the ones forward of that are directors. WiFi is a perfect application for a Yagi because of the known, fixed frequency. (It would also be an antenna you’d consider for GPS meaconing, for the same reason).
    Fun fact: The Yagi wasn’t invented by Yagi, a Todai professor. It was invented, mostly, by his colleague Uda. But Yagi wound up with the credit. Make of that what you will.


“Impossible” Alloys of the Near Future

Steel-Aluminum alloy? Any metallurgist would tag you as a n00b for bringing it up. “Can’t do it. Incompatible. It’s the metallurgical equivalent of dogs and cats lying down together. Winds up with crystallized, embrittled aluminum weakening the steel.” Three Korean scientists, all stereotypically named Kim, from the Pohang University of Science and Technology have almost managed to pull it off — after many years of theory, trial, and error, and standing on the shoulders of previous researchers, as always. The lead investigator is Hansoo Kim.

The resulting material has properties that sound like Ayn Rand’s fictional Rearden Metal — light, strong, potentially cheap. It exceeds titanium alloys, hitherto the lightest and strongest alloys known, for lightness and strength. Yet the aluminum that lightens the alloy doesn’t embrittle it — it leaves it ductile, or workable. That’s why this research has potential outside of the metallurgist’s lab.

The secret appears to be accepting that Fe-Al “intermetallic compound” inclusions (they call this compound B2)  within the metal will be somewhat brittle, and managing their size and dispersion so that they lighten the resulting steel without embrittling it. They did this by adding nickel, which “catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel.” In much the way that windows don’t break and make a skyscraper fall because they’re not load-bearing structures, these fracture-prone B2 particles are individually so small and so widely and evenly dispersed that a crack has no pathway to propagate. Think of it as rip-stop steel at the nanometer scale.

This work is evolutionary as much as it is revolutionary. It builds on previous work on TRIPLEX steels, which are steels with significant amounts of manganese, aluminum and carbon serving to modify iron’s physical properties (and that in turn builds on 1970s research in the USSR). Previous TRIPLEX research by Springer and Raabe (details linked below) found that while holding manganese and carbon content constant at 30% and 1.2% respectively, strength went up as up to 8% aluminum displaced some of the iron in the balance.

steel strength with aluminum

strength with various levels of aluminum in alloy (Springer & Raabe).

Springer and Raabe, and others, built on Soviet work that developed high-strength but very brittle iron-aluminum steels.

How can a material be strong and brittle? They’re separate properties. Strong suggests how far you have to go to make the metal fail. Brittle suggests a material that then fails abruptly by breaking. It doesn’t deform. (Imagine a car that, crashed into a tree, shattered into shards rather than got dented). But that’s not just a problem for designers: it’s a hell of a problem for manufacturers, for many of our steel-processing approaches expect steel to be ductile. We bend it on anvils or stamp it in dies; we shear it with cutting tools; we curve pipes around; we hydroform it. All of those processes depend on the ductility of the metal.

The tables and graphs in the paper in Nature (one of the two most prestigious peer-reviewed journals in the world) suggests that this novel aluminum-bearing steel alloy not only has superior balance of strength and ductility to TRIPLEX, but also offers real ductility advantages over typical titanium-aluminum-vanadium alloy. (If you’ve ever worked with titanium, you know ductility is not its strong point).

nature steel-AL alloy figure 1

What do alloys like this mean for firearms? The three Dr Kims are excited about automotive and aviation applications, because those are the primary users of large quantities of lightweight alloys (and have been turning increasingly to more exotic materials, like carbon fiber, carbon-carbon, and lithium alloys, in pursuit of lighter strong materials). But the technology that shows up on the auto line and in the aerospace factory does make it to firearms, especially as every firearms designer now alive is alert to how 1940s aviation technology enabled Stoner, Sullivan et. al. to revolutionize firearms design in the 1950s and early 60s. If nobody in your engineering shop is getting SAE’s Aerospace Engineering, you’re either committed to traditional materials and processes, or a me-too design shop.

While the material itself is of great interest, the scientists think that the process will be, in the long run, far more important because it will allow the invention of entire classes of previously “impossible” alloys.

The process has one major hurdle before it can be commercialized: a method must be found to prevent the oxidation of the steel, in-process. Technologies used on conventional steels won’t work, and building the foundry on an airless asteroid solves the oxidation problem, but leaves you with the steel somewhere other than the planet where it’s required.

And right about now, perhaps in some unexpected corner of the world, a grad student is mulling this problem, and sometime soon a light will go on in his head….

For more information

Popular Mechanics article for laymen:

Nature article (abstract, references and tables only w/o subscription):

Information on TRIPLEX steel-AL alloys (Forerunner of this research):

BREAKING: Tracking Point is Back!

TrackingPoint ARWe received minutes ago the word that Tracking Point, last seen nearing belly-up in bankruptcy protection, is back in business, accepting orders, shipping product, and resuming development. In fact, founder and new CEO John McHale is so enthusiastic about the relaunch that we’ve received, if we’re counting right, (3) releases in a matter of minutes around 0930 Eastern Daylight Savings Time (including one link that 404’d. Patience, John).

Rather than plus up McHale’s comments with our opinions, and further delay getting this up (and thereby getting beaten by our friends at TFB, which we probably will anyway because there’s a small army of them), here’s the release:

TrackingPoint Emerges From Restructuring a Leaner and Stronger Company
Founding Management Team Returns To Lead TrackingPoint Forward

Pflugerville, Texas (September 15, 2015) – TrackingPoint announced today the successful completion of a financial and operational restructuring. The company is accepting new orders while fulfilling its backlog of existing orders. In the spring of 2015, TrackingPoint temporarily suspended production and deliveries in order to put the company back on a strong financial footing. TrackingPoint previously announced 2014 year-on-year unit growth of 281%, and its management indicated that the rapid growth subsequently outstripped the company’s ability to manage its operations.

TrackingPoint’s founding team of John Lupher and John McHale has returned to manage the company going forward. John Lupher reassumes his founding role as Vice President of Engineering, while John McHale, formerly Chairman, returns to his original role as CEO. “We were successful early on, so John Lupher and I decided to go back to our roots and take TrackingPoint to the next level”, said McHale. Frank Bruno, Chief Operation Officer, and Richard Wierzbicki, Chief Financial Officer, bolster the team to ensure the company operates efficiently going forward.

The company has a five person board of directors that includes Eric Olson, the first Navy Seal to rise to the rank of four-star Admiral. Olson, a Navy Seal for 38 years and retired former Commander of the US Special Operations Forces, helps lead TrackingPoint’s defense strategy and initiatives. “I’m glad to see TrackPoint moving forward with renewed focus on law enforcement and the military. “This is innovation at its best, with a real and meaningful purpose for security forces and war fighters”, said Olson.

“This is a new beginning for TrackingPoint,” said McHale. “We will focus intently on the consumer, continue to innovate, and operate in a way that ensures long term success.” The company’s investors include the Friedkin Group, Goff Capital Partners, and McHale Labs.

About TrackingPoint

TrackingPoint is based in Austin, Texas, and created the first Precision-Guided Firearm, a revolutionary new shooting system that puts fighter jet lock-and-launch technology in small arms, enabling shooters to make shots previously considered beyond human ability. For more information, please visit

tracking_point_advanced_modeWe’ll be digging further into this, but in our opinion this is good technology; a glimpse of the future for hunters, snipers, and in time, combat troops; and innovation that deserves to be rewarded in the marketplace.


The biggest obstacle to wider adoption of the TP technology is price (they have a lot of RDT&E to amortize). McHale has made a small nod in the direction of affordability with the announcement of a $500 discount on any TP precision-guided firearm system purchased between now and year’s end.

Do We Need A Bigger Bullet?

Jim Schatz, former HK USA manager (during the period of peak Because-You-Suck-And-We-Hate-You customer service, actually) always has one of the most interesting presentations when he’s up at an NDIA1 conference. The slides from this years’ NDIA are up (here), and Jim’s presentation, interesting as ever, is up here (.pdf). Jim wants us launching bigger bullets, to longer ranges.

Jim’s basic beef is probably best encapsulated in this quote from an SF team sergeant:

Few enemies would even consider taking America on in a naval, air or tank battle but every bad actor with an AK will engage with U.S. forces without even a second thought.

To boil down his argument to a single-sentence thesis: The US lacks small-arms overmatch, and only changing cartridges can get it for us. He defines overmatch by effective range. As he sees it, this is what the world looks like today:


As a former infantryman, Jim knows that weapons don’t square off one-against-one. On the battlefield, units from corps to squad size all maneuver to bring their organic, attached and support firepower to bear on the enemy (who is doing the same, inversely). It’s a common fallacy that (for example) because every squad in the Ruritanian army has a designated marksman, our squads should have one too. (Maybe they should, but not directly because of what the Ruritanians are doing). As you can see, Jim’s focus on range leads him to pair off sniper rifles with light machine guns, weapons which have similar effective ranges for completely different reasons, even when they fire dimensionally identical ammo.

As far as his 1000m effective range of the SVD is concerned… he must have shot one?

Here is one of his proposals for overmatch. There’s a few things screwy here (the SVD has grown  an even-more-ludicrous 500m of range, to 1500m), but that’s not important. What is important is the argument that going to an Intermediate Caliber Cartridge (something like the 6.5 or 6.8 or something all new in the 6-7mm neighborhood) for rifles and to .338 for support weapons will provide significant range overmatch.


The increased ammo weight can be made up in part by polymer or semi-polymer (i.e. with a metallic base) cases.

Jim at least partially neutralizes the cost-in-times-of-drawdown argument by suggesting that the new weapons go only to the tip of the spear, the guys whose mission it is to produce casualties, and take and hold ground, with these weapons. That’s only about 140k actual shooters out of the much larger service. A finance clerk needs a rifle, sure, but he or she can live with the latest-but-one.

Bear in mind that the target set is also not static, while we’re developing all these new weapons the Russians, the Chinese, and even the ragtag insurgents of the world (who have definitely, like Russia, pushed more 7.62mm weapons down to squad-equivalent level than heretofore) are acting, adapting, and changing, too. We don’t need to overmatch the enemy today with the weapons we’ll have in ten years. We need to overmatch the set of weapons the enemy will have ten years from now, in ten years.

Men can disagree about how best to get there. Assuming we stick with the M16/M4 platform, Our Traveling Reporter would have us go to the 6.8 x 43. (It was news to him that the Saudi Royal Guard has adopted this platform, in LWRC carbines, or that military 6.8 is in production for export now by Federal — formerly ATK). We would probably go with the 6.5 (x38, although the length designator is seldom spoken aloud) Grendel for its lower BC and higher sectional density (=longer effective range, flatter trajectory, more energy on target). The 90 grain Federal load in the 6.8 is very effective closer in (the 6.8 was developed with SF input as a CQB cartridge).

Some current contenders --  M855A1 5.56; 6.5 Grendel; 6.8 SPC; 7.62 NATO. From an excellent article by Anthony Williams setting out the historical context.

Some current contenders — M855A1 5.56; 6.5 Grendel; 6.8 SPC; 7.62 NATO. From an excellent article by Anthony Williams setting out assault rifle ammo in historical context, including many old, obscure, and outright forgotten attempts. Shape of the 6.5 suggests a superior BC. The 6.8 is compromised by its 5.56 ancestry and packaging (bolt head size/overall length).

This is not an entirely new or novel idea. As mentioned in the caption to the photo above, British researcher Anthony Williams has a very fine article on Assault Rifle History with lots and lots of ammunition comparison photos. Back in the 1970s, a guy whose business was called Old Sarge, based in the highway intersection of Lytle, Texas, made a quantity of 6 x 45 guns and uppers. Based closely on the 5.56, these guns (most of them were built as what we’d now call carbines) were completely conventional, but like today’s 6.8 SPC the intent was to create superior terminal ballistics. We don’t know what happened to him or what seemed to be, when we stopped in, his one-man business (he talked us out of a mod he’d done for others, an M60 bipod on an XM177).

If we have a serious criticism of Schatz’s work here, it’s that its focus solely on range as an indicator of overmatch understates the problem. Hadji with his AK and mandress has a lack of fear of our troops that stems only partly from his belief that range makes him safe (and only partly from his paradise-bound indifference to being safe). His feeling of impunity stems from a belief he won’t be engaged at all, won’t be hit if engaged, and won’t be killed or suffer significantly if hit. We need to increase the certainty that our guys will fire back, not just increase our pH, and we need to increase our pK as well. The first of these is far outside the scope of weapons and ammunition design, but it is, in our view, the most serious shortfall of US and Allied forces.

We have another beef that’s not specific to this, but that arise with any attempt to pursue range or other small-arms overmatch: it never works. There are only two ways pursuit of overmatch can finish. Either your new weapon does not constitute an overwhelming advantage, or it does — in which case everybody copies it most ricky-tick. Mikhail Kalashnikov died bothered by the fact that he never got royalties on any of the millions and millions of AKs made outside of his homeland, but the guys who really got copied were the engineers who built the StG.44. (True, the AK was better adapted to Soviet expectations, traditions, manufacturing capabilities, and training modes, but it was certainly inspired, conceptually, by the first assault rifle). It was a good idea. It was exclusive to Germany for mere months (of course, that they were losing the war may be a factor, but that the war ended was certainly a factor in slowing the adoption of assault rifles in Russia (a little) and the West (a lot).

In all seriousness, if you look at the history of firearms, you see a punctuated equilibrium. For centuries the flintlock is the infantry weapon, then the percussion lock sweeps the flints away in a period of 30 years or so (faster for major powers, or anybody actively at war). Then the breechloader dethrones the percussion rifle-musket in a couple of decades… to itself be overthrown by repeaters in 10 to 20 years. Calibers go from 11-13 mm to 7-8 mm to 5-6 mm at the same time all over the world. We’ve had a very long period now of equilibrium around the SCHV (Small Caliber, High Velocity) concept. Is it time for that equilibrium to be punctuated? Schatz says yes.


  1. NDIA: National Defense Industrial Association, a trade and lobbying group for defense contractors. Formerly the American Defense Preparedness Association (when Your Humble Blogger was a member, and they were fighting a rear-guard action to preserve a defense industrial base during the Clinton disarmament/drawdown cycle), and before that the Ordnance Association.


Daniau, Emeric. Toward a 600 M Lightweight General Purpose Cartridge. September 2014. Retrieved from: ; this is a uniquely French view of this same challenge, hosted online by Anthony Williams.

Schatz, Jim. Where to Now? 3 June 2015. Retrieved from:

Williams, Anthony. Assault Rifles and Ammunition: History and Prospects. Nov 2014. Retrieved from:

Williams, Anthony. The Case for a General-Purpose Rifle and Machine Gun Cartridge (GPC). Nov 2014. Retrieved from: ; an earlier version was presented at NDIA in 2010:

(Note that Williams’s work on this matter was sponsored by H&K, a fact that is not invariably disclosed in all documents but that Williams publicly discloses on his website).


It’s About Time: Army Looking at JHP Ammo

9mm_124grain_jhpThis week industry contenders met with Army evaluators in the final Industry Day for the XM17 Modular Handgun Program, and the most interesting news is that the JAGs are finally on board with using jacketed hollow point ammunition in the new pistol.

This has several consequences, assuming that these lawyers are overruled by other lawyers somewhere down the line:

  1. It increases the defensive utility of the firearm against unarmored enemies, although not nearly to the level of a rifle or rifle-caliber carbine.
  2. It just about guarantees that, modular or not, our next service pistol will be firing the 9mm. The 9mm is as effective — with modern JHPs — and much easier to shoot than .40 S&W or .45 ACP, and it offers greater magazine capacity. (See Loose Rounds’ repop of the FBI report that justified the Bureau’s return to 9mm from .40).
  3. It means that most of the “modular” advantages the XM17 proposal wants are kind of pointless. The Army wants a service pistol and a max-commonality concealment/compact pistol. Since users seldom go from requiring one to requiring the other and back — the set of concealment/compact pistol users is small, as M11 procurement numbers show — the whole “modular” theme of the procurement is a bagatelle.

Bob says these are the criteria, apart from improved ergonomics relative to current service pistols.

  • non-caliber specific
  • modular grips
  • grip that accepts a wide-range of hand-sizes (5th to 95th percentile)
  • ability to accept different fire-control devices/action types
  • ability to accept various magazine sizes
  • suppressor compatible
  • ability to mount “target enablers” (lights, lasers, etc) on a picatinny rail
  • match-grade accuracy (90% or better chance 4″ circle at 50 meters)
  • low felt recoil impulse

Not all of these are widely useful (explain to us why a military unit will need their pistols “to accept different fire-control devices/action types”?) but some clearly are. The ones that are most clearly useful, of course, are widespread in modern handguns.

As far as the pistols go, according to Owens, the interesting contenders are the STI/Detonics, the SIG P320, and the Beretta APX. We find it hard to believe that the 1911-based STI/D is seriously in the game, or that the brand-new APX is sufficiently developed. The 320 (with a safety) does seem to meet all the requirements. Unlike Owens, we’re not ready to write Glock and S&W off, and would be very surprised if both of them didn’t  make serious and credible proposals.

Here’s Bob’s story on the JHP reveal at the briefing, and here’s his story on what he considers the leaders of the modular handgun competition. Note that there is one small error or oversight in his JHP story, and that’s his statement that US SOF have used 9mm and .45 JHPs. To that, we’d add .40s. (Certain specific units use this caliber). The Gun Zone’s Dean Speir wrote a post years ago on the legalities as observed by SOF since 1985.

Don’t Get Too Excited

Given the marginal role handguns play in combat, the adequate supply of current M9 and M11 service pistols (as well as non-standard pistols in some units), and given the rampant downsizing of the Army (it has less than half the combat power it did in Cold War days, and is scheduled to lose another 40,000 men, mostly “tooth” not “tail”), this entire program is a waste of time and money. If the contract goes forward, the Army will buy about a half-million service pistols plus some tens of thousands of compact variants for all services. The Air Force and Navy are accustomed to having the Army do their small-arms purchasing. The Army plans to force-feed the new modular pistol to the Marines, who are explicit about their lack of interest in it.

We’d be very surprised if this proposed procurement came to pass. If the Army doesn’t kill it, Congress will.

But the final approval of JHP ammunition for non-SOF pistol users is long overdue. In fact, it’s the single biggest thing they can do to improve the utility of current service pistols, and it can be done without out tests and contract disputes (hollow-points are already in the supply system for DOD police).


Soldier Systems Daily has the PEO Soldier press release with direct quotes from Richard Jackson, Special Assistant to the U.S. Army Judge Advocate General for Law of War.

Debi Dawson, PEO Soldier spokeswoman, also noted that by “modular” the Army means “allows adjustments to fit all hand sizes.”

What’s After Tracking Point?

We’ve been pretty high on precision guided weapons technology since the first time we saw a TOW do its thing. (And Javelin and other current weapons have answered most of the complaints about TOW since then). But in recent years, the promise of PGWs has migrated down into the small arms world, thanks to the same combination of Moore’s Law, free-flying science and nitty-gritty engineering that gives us everything from rapid genome sequencing to haptics and 3D printing.

We’ve been pretty impressed with the precision-guided rifles and Tag / Track / XACT technology of Tracking Point. So what comes after that? DARPA says: precision-guided, steerable bullets. They call the program, in a felicitous acronym, EXACTO, Extreme Accuracy Tasked Ordnance. Like the Javelin and the Tracking Point PGW, it seems to tag a target and then pursue it relentlessly.

DARPA recently released the above video, along with this blurb:

DARPA’s Extreme Accuracy Tasked Ordnance (EXACTO) program, which developed a self-steering bullet to increase hit rates for difficult, long-distance shots, completed in February its most successful round of live-fire tests to date. An experienced shooter using the technology demonstration system repeatedly hit moving and evading targets. Additionally, a novice shooter using the system for the first time hit a moving target.

This is not too different from what TrackingPoint does now, in terms of results. What is different is how the EXACTO round functions.

This video shows EXACTO rounds maneuvering in flight to hit targets that are moving and accelerating. EXACTO’s specially designed ammunition and real-time optical guidance system help track and direct projectiles to their targets by compensating for weather, wind, target movement and other factors that can impede successful hits.

You can see from the video that they’re getting hits on their e-type silhouette, but they don’t appear to be getting center of mass hits. Still, it’s an admirable case of the dog walking on his hind legs, and this suggests that the science is licked, and what remains from here on out is simply engineering. (Not trivial, engineering, but once the science has shown that something is possible, it’s up to the engineers to find elegant and practical ways of doing it).

One significant difference between this and Tracking Point’s technology (so far) is that TP uses a bespoke or customized weapon; according to DARPA, EXACTO works with an ordinary rifle, only the optoelectronics and ammunition are changed.

It’s not rifle-caliber, as usually designated, yet; this demo is with a .50 caliber smart projectile.

“True to DARPA’s mission, EXACTO has demonstrated what was once thought impossible: the continuous guidance of a small-caliber bullet to target,” said Jerome Dunn, DARPA program manager. “This live-fire demonstration from a standard rifle showed that EXACTO is able to hit moving and evading targets with extreme accuracy at sniper ranges unachievable with traditional rounds. Fitting EXACTO’s guidance capabilities into a small .50-caliber size is a major breakthrough and opens the door to what could be possible in future guided projectiles across all calibers.”

The EXACTO program developed new approaches and advanced capabilities to improve the range and accuracy of sniper systems beyond the current state of the art. The program sought to improve sniper effectiveness and enhance troop safety by allowing greater shooter standoff range and reduction in target engagement timelines. For more information, please visit the program page.

via 2015/04/27 EXACTO Guided Bullet Demonstrates Repeatable Performance against Moving Targets.

OK, so let’s visit the program page, shall we?

Turns out, there’s not all that much there. We do get an uninformative 3D rendering of an EXACTO projectile, but that’s about it. There is a suggestion that the steering of the bullet is aerodynamic in principle.

exacto projectile_fullThere is this brief update on where the project stands:

The EXACTO 50- caliber round and optical sighting technology was developed to greatly extend the day and nighttime range over current state-of-the-art sniper systems. The system combined a maneuverable bullet and a real-time guidance system to track and deliver the projectile to the target, allowing the bullet to change path during flight to compensate for any unexpected factors that may drive it off course.

Technology development in Phase II included the design, integration and demonstration of aero-actuation controls, power sources, optical guidance systems, and sensors. The program concluded with a system-level live-fire test.

In 2009, the project was described as follows [.pdf]:

Extreme Accuracy Tasked Ordnance (EXACTO)* *Formerly Laser Guided Bullet.

(U) The Extreme Accuracy Tasked Ordnance (EXACTO) program is developing a system that provides sniper teams with the ability to identify and engage targets with heretofore unobtainable range and accuracy against stationary and moving targets under difficult environmental conditions, either day or night. The system uses a combination of a maneuverable bullet and a real-time guidance system to track the target and deliver the projectile to target. Technology development includes the design and integration of aero-actuation controls, power sources, and sensors. The components must fit into the limited volume (2cm to the third power) of a 50-caliber projectile and be designed to withstand a high acceleration environment. When integrated and tested, this system will greatly increase the effectiveness of two-man sniper teams, regardless of the environmental conditions and the time of day. The EXACTO technology is planned for transition to the Army by FY 2012.

FY 2009 Plans:

– Design guidance system.
– Design maneuverable projectile.
– Construct all novel 1x scale components.
– Measure component and subsystem performance in appropriate environments.

An Air University paper said this of EXACTO, comparing it to aviation precision guided munitions programs:

Foot soldiers are often left out of consideration when money is spent on precision weapons. The DARPA Extreme Accuracy Tasked Ordnance (EXACTO) is a command-guided .50 Cal sniper round designed to put long range, pinpoint precision in the hands of a common soldier. The system works by tracking a target with an infrared spotter’s scope that doubles as a command- guidance tracker. The .50 Cal bullet is fired and responds to trajectory commands sent by the scope (which tracks the target and bullet). The system accounts for wind, moving targets, and provides accuracy at range that normally requires years of sniper training to achieve. The EXACTO program not only gives sniper capabilities to common foot soldiers, it ensures a kill on the first shot, and enables moving target capabilities that have until now only been available to tactical aircraft and UAVs. In this case, the range is far shorter than HTV-21 or T32, but the strategic implications of super-sniper-battalions may prove even more deterring to an enemy force. For years, the real practical advantage US soldiers held over adversary soldiers came in the form of the air power watching over. EXACTO aims to enable America’s soldiers to enjoy technological advantages its airmen have enjoyed for decades.3

Although EXACTO was indeed scheduled to conclude in 2012 [.pdf], and some DARPA pages refer to it in the past tense, but the live fire test video shown here was shot in 2015 and only released in April (in-house, 10 Apr 15, to the public, 27 Apr 15).


  1. HTV-2: Hypersonic Test Vehicle-2.
  2. T3: Triple Target Terminator-3, an experimental missile that combined a ramjet sustainer with a rocket booster in the form factor of a pre-existing missile.
  3. Nielsen, Michael B. (Maj., USAF). Addressing Future Technology Challenges through Innovation and Investment . March, 2012: Air University, Maxwell AFB, Alabama.

Jets (and Vehicles) with Frickin’ Lasers on They Heads

Doctor Evil’s technological dreams, not to mention Auric Goldfinger’s and Ernst Stavro Blofeld’s, are inching closer to reality. That’s the only possible conclusion an avid movie-goer will draw from a fascinating Bill Sweetman article in Aviation Week. 

Today, on an armored vehicle as an air defense weapon that doesn't need to "lead" a target; tomorrow, an aerial precision-strike capability? (Bill Sweetman AWST photo).

Today, on an armored vehicle as an air defense weapon with a functional MV of infinity, so it doesn’t need to “lead” a target; tomorrow, an aerial precision-strike capability? (Bill Sweetman AWST photo).

In fact, Sweetman deploys a bunch of pungent prose that sounds like something out of The Strategy Page, but with the essential difference that Sweetman knows what he’s talking about and has been wired into defense RDT&E since the second coming of laser weaponry (and the first serious, non-Bond-villain one) in the 1980s. Sweetman starts with a dismissive swipe at US and USSR laser weapons programs of the 1980s (“The only thing of consequence that any of them destroyed was confidence in laser weapons”), and then leaps into “that was then, this is now”-ville.

New HEL [High-Energy Laser] weapons are smaller than the 1980s monsters, with a goal of 100-150 kw, and powered by electricity rather than rocket-like chemical systems. Modest power permits more precise optics and—in some cases—the use of commercial off-the-shelf fiber-laser sources, improving beam quality (that is, focus) and reducing cost.

Star Wars lasers were intended to hit things that missiles could not touch. The new generation exploits different characteristics: a magazine as deep and easily replenished as the fuel tank, and a low cost per shot (about $1, says Rheinmetall). The idea is to deal with targets that missiles cannot engage affordably.

A mini-UAV is a threat because it can target ground forces for artillery. It is cheaper than any surface-to-air missile, but a laser can blind it, destroy its payload or shoot it down. Rocket and mortar defense is another application. Rafael’s Iron Beam laser is a logical follow-on to Iron Dome, which is practical and affordable only because it ignores rockets that will fall on open ground; that will no longer work when weapons are guided.

Hmmm. Thinking about the implications of what Sweetman is saying here, there are several paths around Iron Dome which the Palestinian terrorists may choose to adopt: they could try overwhelming it with quality, overwhelming it with accuracy (by guidance, as he suggests, or simply by increased ballistic accuracy and precision of aim), or overwhelming it with speed by using gun artillery instead of relatively-slow rockets.

Wile-E-Coyote-Genius-Business-CardNo doubt the cagey Israelis (has any nation’s paranoia ever been more justified?) have already thought this through and have counter-countermeasures in development (one of which certainly is a laser system). The Palestinians, in their ongoing attempts to outsmart the smarter Israelis, are the Wile E. Coyote of weapons development.

Anyway, let’s return to Sweetman’s rundown of current and very-near-future directed energy weaponry.

Close behind the systems already shown by Rheinmetall, Rafael and MBDA—certainly not a technological leap away—is the new Gen 3 HEL being developed by General Atomics Aeronautical Systems to fit on an Avenger unmanned air vehicle (AW&ST Feb. 16-March 1, p. 30). If what we hear is correct, it combines an output as high as 300 kw with high beam quality; it can fire 10 times between 3-min. recharges; and a version might fit in the 3,400-lb. pod that Boeing designed for the Advanced Super Hornet (see photo). A bomber or a special-operations C-130 could carry it easily.

This is a tipping point, because what you can do with 300 kw also depends on what you are trying to protect. If the goal is to knock down a supersonic antiship cruise missile (ASCM), there are two problems: water in the atmosphere (which attenuates laser energy) and the fact that a damaged ASCM can still hit the target. But if the target is an evasively maneuvering aircraft, it will often be in clear, dry air; and it is enough to destroy the missile’s seeker, put a hole in the radome, even at well-sub-kilometer range or weaken the motor tube to cause a miss, even at well-sub-kilometer range.

This is one where you’ll find it rewarding, we think, to open the mind and  Read The Whole Thing™. Sweetman is no more infallible than any of us, but he is a more informed aerospace analyst than almost any of us, and bears close watching.

What’s Up in the 3D Printed Gun World?

Time for an update, eh?

WarFairy Lower Banner

We’ve been seeing really creative AR lowers for a while now. A lot of the greatest ingenuity, like the FN-inspired creations above, come from the innovator who calls himself Shanrilivan and his creative entity WarFairy Arms. Watching his Twitter feed, or @FOSSCAD’s, is a good way to keep up with what’s coming from the community. (Coming soon: AR and AK fire control groups, for example):

AR fire control group

If you think there’s no innovation happening in firearms, you’re not tapped into the maker community inside the gun community — or is it, the gun community inside the maker community?

Some Words about Development

These lowers are not being “engineered” in any real sense of the word. Instead they’re being designed, and are then being tested, in a very tight closed-loop development cycle. From lowers that busted in a couple of shots, we’ve got lowers that have endured thousands of rounds. And that look stylish. This pastel AR has a printed lower and printed magazine.

printed lower and mag

It’s ready for its close-up, Mr De Mille:

printed lower and mag closeup

To see about 15 more pictures of printed-gun developments, including magazines, a 7.62mm lower, a revolver, and more, click the “More” button.

Continue reading

What’s the Opposite of “Advanced”?

We leave answering the question as an exercise for the reader after watching this video, about 15 minutes long. Here you see the 1989-90 contenders for the Advanced Combat Rifle, a program that would have replaced the issue M16A2 rifle which was still being fielded into some low-priority units, replacing 20-25 year old M16A1s, at the time.

The video begins with a rather sloppy three-minute history of American infantry weapons (you’ll cringe at the assertion that the first Army bolt-action was “made by Krag-Jorgensen,” or that the 1903 Springfield “wasn’t much better than the Krag.”  The video also makes a curious claim — one not seen in the doctrinal literature — that the M16A2 had an effective range of 550 meters.

The reason for the program is explained: the actual combat accuracy of the rifle in soldiers’ hands degrades far below its mechanical potential. So the ACR program was hoping to double the real-world effectiveness of the individual weapon.

The four vendors trying to grab the contractual brass ring were:

  • AAI, with a flechette-firing M16 cousin, complete with early ACOG;
  • Colt, with a product-improved M16, including an adjustable carbine-like stock, four-position selector, duplex (two-bullet) ammunition, and an available Elcan scope (similar to the model later adopted as the M145 machine-gun optic);
  • H&K, with an Americanized version of their ill-fated caseless G11; and,
  • Steyr-Mannlicher, with an oddball AUG derivative firing polymer-cased rounds with flechette projectiles.

At about 10 minutes in, the video presents the modifications made to Buckner Range on Fort Benning to evaluate the novel weapons.

In the end, none of them was sufficiently superior to the issue M16A2, or sufficiently well-developed already, to justify further development.

We thought for sure we’d put this video up before, but while we’ve talked about some other boneheaded procurement events — like in this post on the Objective Family of Weapons two years ago — we don’t appear to have actually done it.